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Some general theorems concerning the finite motion 
of a shallow rotating liquid lying on a paraboloid 
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The motion of a bounded shallow liquid, initially of arbitrary shape, in an 
arbitrary state of motion and lying on a paraboloid of revolution (including 
a level surface as a special case) can always be separated into three parts: 

(i) the motion of the centre of gravity, which is entirely independent of the 
other motions and is governed by a pair of simple ordinary linear differential 
equations; 

(ii) an isotropic two-dimensional dilatation and rotation which are also 
governed by a simple linear differential equation ; 

(iii) the motions that remain after removal of the velocity fields associated 
with the preceding motions; these will be called additional motions. 

The additional motions exert a ‘pressure’, determined by their total energy, 
which tends to increase the spread of the liquid. If the spread does increase then 
the additional motions lose energy which then appears as energy associated with 
the dilatation. 

The effect of the dilatation and rotation on the additional motions can be 
described by transformation into a co-ordinate system that rotates and dilates 
with the liquid. In  these co-ordinates, with a properly adjusted time scale, the 
additional motions satisfy equations that are isomorphic with the original 
equations of motion; however, the liquid now appears to be lying on a parabola 
that is always conca.ve upuiards. 

1. Introduction 
In the following analysis we are concerned with motions of a liquid that is 

‘ shallow ’ in the sense that vertical accelerations can be neglected. On the other 
hand the horizontal scale may be large enough for coriolis forces due to the 
rotation of the earth to be important. A bounded mass of liquid is considered 
and friction neglected, so that energy can be neither radiated away by gravity 
waves nor destroyed. The totalenergy is therefore constant and this constant plays 
an important part in the later developments of the theory. The liquid is assumed 
to lie on a paraboloid that is not necessarily concave upwards and the theory 
describes not only oscillatory motions but also a general collapse under gravity. 

The basic theory is divided into two sections; the first and lesser section being 
concerned with ‘displacement’, i.e. motion of the centre of gravity of the liquid; 
and the second being concerned with ‘distension’, a term which is here used to 
signify a combination of rotation and two-dimensional dilatation. In  each case 
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a general theorem is first proved which shows how the displacement or distension 
can be determined regardless of an arbitrary field of additional motions. The 
effect of the displacement or distension on the other motions is then completely 
described by a transformation of co-ordinates. It is found that the displacement 
is independent of other motions, whereas there is a non-linear interaction in- 
volving transfer of energy between the distension and the other motions. The 
latter case is of special interest because the non-linear interaction is described 
completely and exactly; furthermore, it is not an interaction between two 
particular solutions but an interaction between a particular solution and all 
other shallow water motions. 

Previous work has shown that the linearized shallow-water equations have 
particularly simple solutions when the motion occurs on a paraboloidal surface ; 
see, for instance, Proudman (1925), Goldsbrough (1930) and Lamb (1932, $9  193 
and 212). The results presented here show that this simplicity extends in some 
degree to the non-linear equations. It has also been shown (Ball 1962) that the 
paraboloid is the only surface on which a shallow liquid can move in the simple 
way described hereafter. 

There is a difficulty, concerning the validity of the shallow water approxima- 
tion, that is tacitly ignored throughout the remainder of the paper. It is usually 
a simple matter to justify the shallow-water approximation a posteriori, once a 
particular solution has been determined (see Lamb 1932, 3 172). In  the present 
case, where the main concern is with general theorems rather than particular 
solutions, this is not possible (except for the two particular solutions presented). 
It would be very useful if one could either impose some limitation on the initial 
conditions to ensure the continued validity of the approximation or deduce from 
given initial conditions a time interval during which the approximation should 
remain valid. 

Usually, after a time, solutions of the shallow-water equations cease to be 
single valued and so become physically meaningless (though this situation can 
be partly remedied by introducing discontinuities into the flow). However, 
before this stage is reached, the horizontal gradients become indefinitely large 
and the shallow water approximation ceases to be applicable somewhere in the 
flow. It seems likely, that by ensuring the validity of the shallow water approxi- 
mation, we would also ensure the existence of meaningful solutions. 

2. Displacement theory 
The ‘shallow water’ or ‘tidal’ form of the non-linear equations of liquid 

motion is assumed throughout the following analysis and no further approxima- 
tions are made. These equations are 

DU a 
- +g- ( h + Z )  = fv, Dt ax 
DV a 
-+g- (h+Z)  = -fu, Dt ay 
Dh 

(3)  

16 Fluid Mech. 17 
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where h is the depth of the liquid and Z is the height of the base of the liquid 
above some fixed level. The height of the liquid surface above this level is equal 
to h + Z and the slope of this surface determines the horizontal pressure gradient 
within the liquid. The velocities u, v are independent of z, and f = 3Q sin #, the 
coriolis parameter, where Q is the angular velocity ofthe earth and $ the latitude. 

We now investigate the movement of the centre of gravity of a finite volume 
of liquid, with free boundaries, lying on a paraboloidal surface; so that the 
function 2 has the form $(ax2+~y2). Before developing the main theorem we 
mention the following lemma 

where q is any quantity, clS is an element of area and the integration extends 
over the area occupied by a given volume of liquid, the boundaries moving with 
the liquid. The validity of equation (4) is evident since by proper interpretation 
of d S  we have D(hdX)/Dt = 0. 

Let the co-ordinates of the centre of gravity of a given volume of liquid be 
X and I’, then 

Q S =  hxdS and Q Y =  hydS, 

where Q = JhdS, the constant total volume of the liquid. Whence by dif- 
ferentiating with respect to time and using equation (4) we find 

s s 

and 

and corresponding relationships for Y .  Now the equation of motion in the 
x direction is Du 

Dt 

On multiplying through by h and integrating each term over the area occupied 
by the liquid, we find 

Because we are considering a volume of liquid with ‘free’ boundaries, where h is 
zero, the third term on the left-hand side vanishes giving 

d2X dY 
-- +gaX = f -, 
at2 dt 

and from the equation of motion in the y direction 

d2Y d Y  
at2 dt 
---+gpr = -fl. 

Thus the motion of the centre of gravity is determined uniquely if its initial 
veIocity and position are known. In  other words the displacement of the centre of 
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gravity of the liquid is  independent of the motion that occurs within the liquid 
relative to the centre of gravity. 

We now show that the converse of the preceding statement is also true. The 
total motion satisfies the shallow-water equations (1) to (3).  Let us put 

and 

u' = u-dX/d t ,  
v' = v - d I'ldt, 
x' = x - s ,  
y' = y -  y 

so that u' and v' are the velocities relative to the centre of gravity and x' and y' 
are the coordinates measured from the centre of gravity. With these variables 
the equations transform to 

Du' 
Dt (it ) 
Dv' 
Dt (i: ) 

~ + g  --, +ax' = fv', 

-+g  -,+Py' = -fu', 

Therefore the equations governing the motion of the liquid relative to its centre of 
gravity have exactly the same form as the original equations of motion. 

We have now shown that the motion of the centre of gravity of a finite volume 
of liquid with free boundaries, lying on a paraboloidal surface, is independent of 
the motions relative to the centre of gravity and vice versa. This independence 
is rather different from that of linear solutions. Here the centre of gravity is 
displaced and other motions occurring in the liquid are displaced with it; these 
other motions have no effect whatever on the displacement and the displacement 
has no effect whatever on the other motions. The liquid may be in geostrophic or 
cyclostrophic equilibrium, it may be collapsing under its own weight or con- 
torting itself into a new shape under the influence of coriolis forces; whatever it is 
doing the motion of its centre of gravity is unaffected. In  particular the frequency 
of oscillatory displacement motions is independent of the rotation of the liquid 
(see Miles & Ball 1963). 

There are two special cases of particular interest. First, let us suppose that 
u' = v' = 0, i.e. there is no (horizontal) motion relative to the centre of gravity 
and the liquid undergoes a quasi-rigid displacement. The corresponding solution 
for h, from equations ( 7 )  to (9), is then 

?LO = h,-+(aX'2+&'2), 

where h, is the constant central depth of the liquid. If the liquid is finite then in 
this special case cy, and /I are necessarily positive and we are concerned with a 
paraboloid that is concave upwards. Returning to the original variables, we 
find the following simple exact solution of the non-linear shallow water equations 

uo = dX/dt ,  (10) 

v0 = d P / d t ,  (11) 

h, = hc - +[E(x - X)' +p(y - Y)'], (13) 
16-3 
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where X and I’ satisfy the simple linear equations (5) and (6). Such a motion will 
be called a pure displacement. 

We now show that a pure displacement has the minimum energy compatible 
with a given motion of the centre of gravity and given volume Q. Consider a 
liquid state u, v, h with known X, dX/dt ,  Y ,  d Y / d t  and Q,  but otherwise arbitrary. 
Now 

hudS = QdX/dt = hu,dX, s s 
and similarly for ZJ, whence 

hu’ dX = hv’ dS = 0, s s  
and 1 b ( u 2  + v2) dS = + u ’ ) ~  + (v, + v ’ ) ~ ]  dS 

2 

Therefore the kinetic energy of the arbitrary motion is the sum of the kinetic 
energies of the corresponding displacement and of the motions relative to the 
centre of gravity; furthermore, the kinetic energy of the arbitrary motion is 
always greater than that of the displacement (unless u‘ = v’ = 0 everywhere). 
This result is a special case of the general theorem proved, for instance, in Lamb’s 
Dynamics (1923) 9 46. 

To show that the potential energy is also a minimum we put h = h, + h’ and 

hdX = Q = h., dX whence h’ d S  = 0. 
then we have 

The integration extends over the whole area in which the integrand is not zero. 
We also have 

s s s 
s s 
s s  
hxdS = QX = h,xdS, 

and a similar relationship for y,  whence 

h‘xdS = h’ydX = 0. 

The potential energy is given by 

+g /h(ctx2 + byz + h) dX = +g s(h,  + h’) (axz + /3y2 + h, + h’) dS 

= Q /ho(ax2 + byz + h,) dS + +g /hf2 dS 

+ 4s /h’(ctxz + byz  + Zh,) dX ,  

and by virtue of the preceding conditions and the definition of h, (equation (12)), 
the last term vanishes. Therefore the potential energy of the liquid is always 
greater than the potential energy of a pure displacement (unless h = h,). We have 
shown that the pure displacement not only has the minimum total energy com- 
patible with the given motion of the centre of gravity, but also has the minimum 
kinetic energy and the minimum potential energy. 
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Another simple property of a pure displacement concerns the shape of the free 
surface, z = h + Z .  The quadratic terms in h are equal and opposite to those in 
Z so that h + Z is a linear function of x and y. Thus the free surface is always plane, 
as is also the case for the corresponding modes in the linear theory (see Golds- 
brough 1930). 

As our second special case, consider the motion of the centre of gravity when 
the underlying surface is a paraboloid of revolution. Equations (5) and (6) have 
energy and angular momentum integrals (the constant density is omitted from 
these and similar results presented later) 

which express constancy of energy E, (this is the energy of the motion and 
position of the centre of gravity, not the total energy) and absolute angular 
momentum J ,  (this represents the sum of the apparent angular momentum of 
the centre of gravity about the origin and the angular momentum imparted by 
the earth's rotation). If we put R2 = X2+ Y2, then we find 

which shows that the motion is stable iff + 4ag > 0. These special cases are also 
discussed elsewhere (see Ball 1963). 

3. Distension theory 
Consider once more a finite volume of liquid, with free boundaries, lying on a 

paraboloid of revolution. It is convenient to use polar co-ordinates and the 
shallow water equations then take the form 

E+g($+ar )  D u  = (j+:) v, 

(15) 

where u. and v are now the radial and tangential velocities respectively and will 
retain this meaning throughout the remainder of the paper. The total energy of 
the liquid is 

E = J&h(u2 + v2 + gh + agr2) dS, 

and the total absolute angular momentum? about a vertical axis through the 
origin, is 

J = hr(v + Q f r )  dS, s 
t The absolute angular momentum is the sum of the relative angular momentum, 

associated with the velocity relative to the earth, and the angular momentum imparted 
by the earth's rotation. 
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where the integration extends over the whole area covered by the liquid. Both 
E and J are constads (determined by the initial state) as one can readily verify 
by differentiation, using equations (4) ,  (14)  to (16) and the fact that h is zero on 
the boundary. For present purposes it is convenient to introduce a further 
constant, I<, the 'absolute energy ', where 

K = E + $ f J  

= /$hjldS + (v + +fr)2 + gh + )v2r2] dX, 

and v2 = *f 2 + 4ag. (20) 

The absolute energy is essentially positive if v2 is positive; which, as we shall see, 
is also the condition for stability of the system. 

We now show that the moment of inertia of the liquid about a vertical axis 
through the origin satisfies a strikingly simple equation. This moment of inertia 
is defined as 

I = hr2dX, s 
whence, using equation (4) ,  we find 

The last term in the integrand vanishes because h is zero on the boundary, and so 
from equation ( 1  9) 

a 2 1  
- + V2I = 4K. 
at2 

(31) 

By multiplying through by dI/dt and integrating we obtain 

1 dI .> i [ (bt) + v212] = 4 K I  - C,  ( 2 2 )  

where C is a constant of integration which, as we shall see subsequently, is 
necessarily positive. 

These equations constitute the first important result in this section. They 
imply that the value of the moment of inertia of the liquid about a vertical axis through 
the origin is  determined uniquely at all times i f  its initial value and rate of change are 
known, together with the total absolute energy of the liquid. Thus the behaviour of 
the moment of inertia is independent of the details of the motions present in the 
liquid mass. 

Before proceeding to more general theory we notice that equation (21) is 
consistent with the results of the previous section. If we suppose that the 
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moment of inertia about the centre of gravity is Ic, then I = Ic + R2Q, and from 
equation (21) 

-+-- - 4K - ~ ' (1 ,  + R'Q), d21, Qd2R2 
dtz dt2 

whence, eliminating R by using equation (13), we find 

where Kc = E, + 9 f J ,  is the absolute energy associated with the position and 
motion of the centre of gravity. Thus I, is governed by an equation of exactly the 
same form as I ,  li' - Kc being the absolute energy of the motions relative to the 
centre of gravity. 

We have shown that the changes in moment of inertia are independent of the 
details of the motion of the liquid and we now investigate the extent to which 
the detailed motions are independent of the changes in moment of inertia. In  
order to do this we must separate the velocity field into two parts, one that is 
directly associated with the changes in moment of inertia and one that is not. 
The simplest radial velocity field that can be so associated is that produced by a 
uniform isotropic expansion about the origin; the simplest tangential velocity 
field is that produced by a uniform angular velocity. This velocity field U ,  V is 
determined uniquely when I ,  d I / d t  and J are known, viz. 

and 

2 I d t  I 

(31) 

For brevity this particular combination of rotation and two-dimensional dilata- 
tion will be called a distension. There are at least two reasons for claiming that 
this motion is the simplest compatible with a given I ,  dIjdt and J .  First, any lack 
of uniformity or isotropy would have to be specified by some additional para- 
meter, thus increasing the complexity, e.g. a pure displacement would not be 
determined uniquely by I ,  d I / d t  and J ,  further information is required concerning 
the direction of the displacement. Secondly, a distension has the least kinetic 
energy compatible with the given conditions, as will be proved subsequently. 

Let us return to the general case, where the liquid is in an arbitrary state of 
(shallow water) motion. The quantities I ,  dI/dt and J are readily determined at 
all times from the initial state and we can always define a distension by means of 
equations (23 )  and (24). Furthermore, the velocity field can then be regarded as 
the sum of the distension and an additional velocity field u', v', i.e. u' = u - U and 
v' = v-  V .  We now refer the additional motions to a co-ordinate system that 
distends, i.e. expands and rotates, with the liquid (this procedure is analogous to 
taking co-ordinates that move with the centre of gravity of the liquid in the dis- 
placement theory). To preserve the property of incompressibility when using 
these horizontal co-ordinates there must be an appropriate vertical contraction 
accompanying a horizontal expansion; this suggests that h should also be trans- 
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formed. In  order to maintain compatibility o ~ u ‘ ~ ,  vt2 and gh we find transforma- 
tions for u’ and v’. Finally, comparison of the transformations for r and u’ 
suggests the transformation for t so that a relation of the form Dr/Dt = u will be 
retained. This reasoning, briefly outlined above, leads to the transformation 

Y = r*(I/I,)*, 

B = 8” 4 ( J / I  - +f) dt, 

dt = dt*(I/Io), 
s 

for the independent variables, and 

h = h*(Io/I), 
r d I  
31 dt 

u = U’+U = u*(I,/I)B+--, 

v = V’ + V = v*(I,/I)+ + r ( J / I  - if), 

(25) 

(36 )  

(27) 

for the dependent variables. The new variables have been denoted by asterisks 
and I, is a constant (as yet unspecified) reference moment of inertia. 

We now prove the important result that when the equations of motion and 
continuity are transformed, using these new variables, the resulting equations 
have exactly the same form as the original ones. To prove this we put 

a at* a ar* a ae* a 
at at at* at ar* at ad* 
- --+--+--- 

a r d I  a 
- *(I&)* - - - - ( J / I  - i f )  - I dt ar* ae* = (&/I)  

so 

or 

Using these results, we find, by straightforward transformation of the equations 
of motion and continuity (equations (14) to (16)), the following equations in the 

D*u* ah* new variables 
D*t* + g p  +a*gr* = (f*+v*/r*)v*, (31) 

D*v* g ah* -+-- = -(f * + v*/r*) u*, 
D*t* r*aB* 

where the new ‘coriolis parameter’ is given by 

f * = ZJ/Io, 

(32) 

(33) 

(34) 
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u*g = (C - 2J2)/2I& 

249 

and the apparent shape of the paraboloid is determined by 

(35) 

The reduction of the equation of radial motion to the above form requires the use 
of equations (21) and ( 2 2 )  which govern the changes of moment of inertia. The 
preceding equations are remarkable in that they have exactly the same form as the 
original equa,tions of motion. The motion described by these equations is, however, 
simpler than the original motion; primarily because there is no distension present 
and a* is always positive. Thus 

and 

so 

I* = h*r*2dS* = Io, constant, 136) f 
J* = h*r*(v*+$f*r*)dX* = J ,  constant, s 

h r * u * d X *  = f h*r*v*dS* = 0. (37) 

Perhaps the most elegant way to prove that u* is positive is by consideration of 
the quantities v*, E* and K*, defined in terms of the new variables in exactly the 
same way as v, E and K were defined in terms of the old. Thus 

1'*2 = 4u*g +f*Z. (38) 

Furthermore, from the equation in the new variables which is analogous to 
equation (31) in the old, and remembering that I* = I. (equation (36))) we find 

v*210 = 4K*. 

Now by definition of K* (see equation (19)) we have 

E* = h7* - 1 
2 f  *J ,  

whence eliminating K* and v * ~  and putting f * = 2J/Io we obtain 

To complete the proof we use the definition of E* 

E* = - h*(u*z + v * ~  + gh* + a*gr*2) dX*, 

whence from equation (39), 

2 's 
2 2 'S  -1E* = - h*(U*' + e*' + gh*) dX*, 

and, because all the terms in the integrand are positive, 

E* > 0 and a* > 0. 

The positiveness of a* is of great importance. It means that the additional 
motions must be regarded as occurring on a paraboloid that is concave upwards 
and these motions are therefore stable. The only form of instability that can 
occur is an unstable distension the condition for which is 4ag + f < 0. It should 
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be noted, however, that additional motions, stable in the asterisked co-ordinates, 
may become unstable on transformation to real co-ordinates if 4ag + f 6 0. 

Before proceeding to more general theory we investigate an important special 
case. Equations (31) to (33) have the simple equilibrium solution 

where a* now has the value I ,11H*2 dS*. In  terms of the known volume Q and 
the moment of inertia I,, equation (41) takes the form 

2Q2 

If we return t o  the original variables using the transformations (25) to (30) we 
find the following exact solution of the non-linear shallow-water equations 

r d I  U = - -  
31 d t  ’ 

where I is a function of time given by a simple linear differential equation 
(equation (21)). This solution will be called a pure  distension. This special case 
is also discussed elsewhere (Ball 1962; Miles & Ball 1963). The mean and extreme 
positions of the free surface in simple examples of a pure displacement and a 
pure distension are indicated in figure 1. 

A pure distension has the minimum energy compatible with a given Q, I ,  
d I / d t  and J as will now be shown. Consider a liquid state u ,  v, h, subject to these 
limitations but otherwise arbitrary. Now 

The product terms vanish by virtue of equation (37). The last term is positive 
(unless u = U and v = V )  and the first term is the kinetic energy of a pure 
distension; therefore the kinetic energy of the arbitrary liquid state is always 
greater than that of the pure distension. Similarly the potential energy is given by 

* g j h ( h + a r 2 ) d 8  = 1 41 h2dX+aI  1 
= +g( /P d S  + a1 + d s )  , 

where h = H+h‘. The product terms vanish because constancy of Q implies 
\h’ dS = 0, and from invariance of I we have lh’rz d S  = 0, so lHh’ dS = 0. We see 
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therefore that the potential energy of the arbitrary liquid shape always exceeds 
that of a pure distension (unless h = H ) .  We have therefore proved, not only that 
a pure distension has the minimum energy compatible with given Q, I ,  d I / d t  and J ,  
but also a minimum kinetic energy and a minimum potential energy. The 
minimum value of the energy is 

V2+gH)dX+&I  

97TI 

ib) 
FIGURE 1. Mean and extreme positions of the free surface (vertical scale exaggerated); 

(a )  pure displacement, (b)  pure distension. 

and the minimum value of the absolute energy is 

K,=Em++fJ=-( (  1 dI  )2+~212)+21+s .  ~2 2 ~ 3 g  
8 1  dt ( 4 4 )  

Returning once more to the general case, we use the preceding results to 
investigate the energy transfer between the distension and the additional 
motions. Let us consider the quantity K - Km = E - Em, i.e. the amount by 
which the energy exceeds the minimum value consistent with Q, I ,  dIjdt  and J .  
From equations (23) and (44)  we obtain 

Now K = K ,  only if the motion is a pure distension and in all other cases K > K,. 
Thus a necessary and sufficient condition for the motion to be a pure distension is 



352 F .  h?. Ball 

C = 2J2+ 8Q3g/9m; in all other cases C is greater than this value. The amount by 
which C exceeds its minimum possible value is a measure of the amount of 
energy in the additional motions. This can be shown formally by considering the 
asterisked equivalent of equation (44) 

v*21~ J Z  2 ~ 3 g  +-+- AT* = ___ 
8 21, 9n-Io* 

If we substitute for v * ~  from equations (38) and (34) we obtain 

and from equation (39) and the preceding one we have 

K* = a*gI, + J2/Io. 

Returning to equation (45) and substituting for C - 2J2 from equation (35) we 
find 

Finally, using the preceding expressions for K* and K z ,  we reduce the energy 
equation to 

I 

This equation? (or equation (45)) completely describes the energy transfer 
between the distension and the additional motions. All the quantities are 
constant, except I and K,, and since I is a function of time so also is K,. When 
I increases, the distension energy K ,  increases also, and energy is transferred 
from the additional motions to the distension. When the liquid has spread far 
enough, which it always will in the collapsing case (I”-? 6 0 ) ,  the energy in the 
additional motions will become negligible. 

(49 )  
K-K,=-((K*-K;). I0 

4. General discussion 
We are now in a position to discuss in general terms the behaviour of a shallow 

mass of liquid of arbitrary shape in an arbitrary state of (shallow-water) motion, 
lying on a horizontal surface or on a paraboloid of revolution. The motion of the 
liquid can always be split into three parts: 

(i) The motion of the centre of gravity. This is entirely independent of motions 
relative to it and is controlled by a pair of simple linear equations (equations (5) 
and (6)). As far as the relative motions are concerned we can regard the centre of 
gravity as stationary at the origin. 

(ii) A simple distension (rotation and dilatation). This motion is influenced 
only by the total energy of the additional motions which acts as a ‘pressure’ 
tending to increase the spread of the liquid. If the spread of the liquid does 
increase, then some of this energy is converted to distension energy. The disten- 
sion is controlled by a simple linear equation (equation (21)). 

t This equation can also be derived more directly by showing that C” = C and then 
considering the asterisked equivalent of equation (45). 
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(iii) The additional motions. The main effects of the distension on these 
motions are, first, a slowing down or speeding up of every aspect of the motion 
(whether vortices or gravity waves) according as the liquid as a whole is stretched 
or contracted, and secondly, a general stabilization, since, when considering 
the additional motions, the liquid must be regarded as lying on a paraboloid 
2 = +a*r*2, a* being essentially positive (see equations (39)  and (40)). 

Let us first consider the simple case of a liquid dome of arbitrary shape, in an 
arbitrary state of shallow-water motion, lying on a horizontal surface and 
suppose that the effect of the earth's rotation is negligible (a  = 0,f  = 0). The 
centre o f  gravity of the dome will move in a straight line at  constant speed; a t  
the same time the dome will collapse so that the moment of inertia about its 
centre o f  gravity (from equation (31) with v2 = 0) is given by 

I = 2Kt2 + I,, (50) 

where the origin o f t  has been chosen so that dI/dt = 0 when t = 0 and I, (used in 
the definition of the quantities with asterisks) is taken to be the initial value of I .  
The additional motions must be considered as taking place in a parabolic bowl 
and they will presumably be oscillatory. However, these motions will slow down 
continuously and it is of interest to investigate the exact form of this time trans- 
formation. From equations (37) and (50) we have 

so 

The implications of this equation are curious; not only do the additional motions 
slow down as the liquid spreads out, but even though t increases without limit t* 
never exceeds the value 

T=T(&)'  2 2 K  . 

Thus if the additional motions are oscillatory only a finite number of oscillations 
can be executed. This is illustrated schematically in figure 2. The value o f  T for 
a dome of central depth 1 m and radius 1 km is about 10min. 

When v2 is negative, the additional motions behave in much the same way as 
in the previous case. If we put v2 = -n2, the appropriate solution of equation 
(21) is I = (Io + 4I!/n2) cosh nt - 4K/n2, 
and equation (36 )  gives 

(53) 

I, dt 
( I ,  + 4K/n2) cosh nt - 4K/n2 ' 

(I ,  + 4K/n2)  ent - 4K/n2)  

dt* = ~ ~ _ _ _  

whence (54) 

and as t increases without limit, the right-hand side of this equation increases to 
a limiting value of in, so that t* never exceeds T = n[IO/(n21, + 8K)lfr (this reduces 
to equation ( 5 2 )  when n = 0). 
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To understand the importance of this limiting time, it is necessary to compare 
it with typical periods of the simpler modes of oscillation as deduced from 
perturbation theory. The characteristic frequency is 

v * ~  = 2C/Ii (from equations ( 3 8 ) )  (34) and ( 3 5 ) )  

= (n210+ 8K)/Io 
The characteristic period T* is therefore given by 

(from equations ( 2 2 )  and ( 5 3 ) ) .  

7* = 2771~” = 3T, 

t 

FIGURE 2. The relation between t* and t ,  indicating how a regular oscillation in t* bccomes 
a, continuously retarding oscillation in t with only a finite number of cycles. 

which shows that, in the case of the simpler modes of the additional oscillations 
in which most of the energy would usually be concentrated, there would not be 
time available for the completion of one oscillation. 

In  the cases just considered, the liquid dome is of necessity collapsing, so there 
will always be a distension. However, in the oscillatory case, the liquid ‘pulsates ’ 
with arbitrary amplitude and we can consider the case of zero amplitude when 
the distension reduces to a constant rotation. Let us then consider, in more 
detail than heretofore, the equilibrium conditions when the absolute angular 
momentum, J ,  and the volume, Q, are given and the liquid is in a state of solid 
rotation (this incidentally will give the minimum absolute energy compatible 
with the given values of Q and J ) .  If we denote the moment of inertia in this 
equilibrium position by I,, and the absolute energy by KO, then we have from 
equation (21) 

v210 = 4K,, 

v210 J 2  + 4gQ3/977 
and from equation (44) K - __ + - 

O -  8 210 ’ 
I; = 4(J2 + 4gQ3/97r) 

Kg = v2(J2 + 4gQ3/977) -~ - . 
V 2  

4 

whence 

and 

(55 )  

(56 )  
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We obtain exactly the same result if we determine the conditions for a minimum 
absolute energy from equation (44). 

If, for given values of Q and J ,  the absolute energy exceeds KO, then there will 
be energy available for displacement, for distension or for additional motions. 
The displacement motions can be determined easily from the simple linear 
equations ( 5 )  and (6), when the initial position and velocity of the centre of 
gravity are known. We do not propose to discuss these motions here but will 
assume that the centre of gravity is stationary at  the origin. 

Let us suppose that there is a pulsation present of amplitude a. The appro- 
priate solution of equation (21 )  is 

I = 4K/v2 + a cos vt. (57) 

We then find, from equation ( 2 2 ) ,  that 

C = 8K2/v2 - ia219. ( 5 8 )  

If we take equation (65) as the definition of I, then 

I, = 4Ko/V2 
and from equation (49) 

K - Km = 4KO(K* - K:)/Iv2. (59) 

Then by eliminating K - K ,  between equations (59) and (45) and substituting 
for C using equation (58), we find 

(60) 

This shows how the square of the absolute energy is distributed in the mean 
between the minimum energy state, the pulsation and the additional motions. 
In  the particular case where there are no additional motions then K* = KZ and 

(61 )  

K 2  = Ki  + a2v4/ 16 + 3K,(K* - K z ) .  

K 2  = K i  + a2v4/16, 

and equation (60) can be put in the form 

4 
V2 

I = - {K + (K2 - Ki)t  cos vt}, 

which indicates clearly how an increase in available energy (with given values 
of J and Q and no additional motions) causes an increase both in amplitude of 
pulsation and in mean value of the moment of inertia. 

Returning to the more general case, where the additional motions do not 
vanish, from equations (27) and (57) the time scale of these motions is given by 

I, dt 
4K/v2 +a cosyt ' 

at* = 

I t  is convenient to introduce a constant I,, where 

I, = 16K2/v4-a2 = ~ l S K 0  (KO + K* - KZ) 
v4 

(63)  
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( I ,  is, in fact, the constant moment of inertia that the liquid would possess if the 
energy of the pulsation were reduced to a minimum without changing the energy 
of the additional motions). Using this notation we find 

I,  sin vt 
4 K / v 2  +a cos vt * 

sin (vt*Il/Io) = ~~~ -___-~ 

We see, therefore, that the pulsation causes an alternate speeding up and slowing 
down of the additional motions. The mean effect can be found by putting 

(65)  
vt = mn, whence 

which gives a general slowing down as compared with infinitesimal additional 
motions superimposed on the minimum energy state (with given J and Q ) .  That 
this is a general slowing down dependent on the energy of the additional motions 
can best be seen from the relation 

t* = tIO/I1, 

(1o/I,)2 = K,/(k', + K* - K;), 

which follows immediately from equation (64)  and the definition of I,. 
As before the characteristic frequency of the additional motions is 

so, from equations (58) and (64 ) ,  we find 

v* = VIl/IO. 

This increase in frequency is compensated by the slowing down associated with 
the change in time co-ordinate (equation ( 6 5 ) ) .  This compensation is complete 
when J = 0 because the frequencies of the modes of additional oscillations are 
then all multiples of v*. 

I should like to thank Prof. T. M. Cherry and Dr C. H. B. Priestley for helpful 
criticism during the preparation of this paper. 
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